Ultimate magazine theme for WordPress.

Магниторазрядный насос

0

Магниторазрядный насос

В основе действия магниторазрядного насоса лежит поглощение газов титаном, распыляемым при высоковольтном разряде в магнитном поле. Одиночная разрядная ячейка насоса (рис. 5) образована двумя титановыми катодными пластинами (1) и анодом (2) из нержавеющей стали. Разрядная ячейка помещена в магнитное поле ( 3 -постоянный магнит с магнитопроводом), перпендикулярное плоскости катодов (направление магнитного поля показано стрелкой слева) . При подаче на электроды разрядной ячейки высокого напряжения в ячейке возникает газовый разряд в широкой области низких давлений. Образующиеся в разряде положительные ионы газа ускоряются электрическим полем к катодам и внедряются в них, при этом происходит распыление материала катода (титана) и осаждение его на стенках анода и других поверхностях насоса. Откачное действие насоса определяется внедрением ионов газа в материал катода (ионной откачкой) и поглощением остаточных газов распыленным титаном (сорбциионной откачкой). В зависимости от производительности магниторазрядные насосы содержат десятки и сотни разрядных ячеек, которые объединяются в электроразрядные блоки, помещенные в корпус из нержавеющей стали. Магнитное поле напряженностью 700 Э создается оксидно-бариевыми магнитами, расположенными с внешней стороны корпуса. Насос обезгаживается прогревом при температуре 400-500 °С.

Благодаря отсутствию в насосах накаленных и движущихся деталей, а также рабочей жидкости они обладают высокой надежностью, большим сроком службы (десятки тысяч часов), просты в обслуживании и не выходят из строя при аварийном попадании атмосферы в вакуумную систему. Насосы позволяют оценивать давление в системе по разрядному току. Они работают в области высокого и сверхвысокого вакуума и дают возможность получить предельное остаточное давление 1 40-8 Ра.

Leave A Reply